On Gravity Waves on the Surface of Tangential Discontinuity

نویسنده

  • V. G. Kirtskhalia
چکیده

On the basis of critical analysis of literature it is shown that the existing theory of surface gravity waves is incorrect and contradictory. Based on the new results published by the author dispersive equation for linear waves generated on the surface of tangential discontinuity between air and water was obtained. It is demonstrated that this equation is applicable only to capillary waves and effect of gravitational filed can be neglected in it. Thus, it is impossible to speak about capillary-gravitational waves in linear theory and consequently there is no condition restricting length of capillary wave. Contrastingly to the wide-spread opinion according to which capillary waves are generated only in deep water, it is demonstrated that they can be generated in shallow water as well where the phase speed of wave depends on the depth of water reservoir.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersion of Torsional Surface Wave in a Pre-Stressed Heterogeneous Layer Sandwiched Between Anisotropic Porous Half-Spaces Under Gravity

The study of surface waves in a layered media has their viable application in geophysical prospecting. This paper presents an analytical study on the dispersion of torsional surface wave in a pre-stressed heterogeneous layer sandwiched between a pre-stressed anisotropic porous semi-infinite medium and gravitating anisotropic porous half-space. The non-homogeneity within the intermediate layer a...

متن کامل

Wave Propagation at the Boundary Surface of Elastic Layer Overlaying a Thermoelastic Without Energy Dissipation Half-space

The present investigation is to study the surface wave propagation at imperfect boundary between an isotropic thermoelastic without energy dissipation half-space and an isotropic elastic layer of finite thickness. The penetration depth of longitudinal, transverse, and thermal waves has been obtained. The secular equation for surface waves in compact form is derived after developing the mathemat...

متن کامل

Effect of Rotation and Stiffness on Surface Wave Propagation in a Elastic Layer Lying Over a Generalized Thermodiffusive Elastic Half-Space with Imperfect Boundary

The present investigation is to study the surface waves propagation with imperfect boundary between an isotropic elastic layer of finite thickness and a homogenous isotropic thermodiffusive elastic half- space with rotation in the context of Green-Lindsay (G-L model) theory. The secular equation for surface waves in compact form is derived after developing the mathematical model. The phase velo...

متن کامل

On the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method

Numerical methods such as boundary element and finite element methods are widely used for the stress analysis in solid mechanics. This study presents boundary element method based on the displacement discontinuity formulation to solve general problems of interaction between hydraulic fracturing and discontinuities. The crack tip element and a higher order boundary displacement collocation techn...

متن کامل

Modelling of Love Waves in Fluid Saturated Porous Viscoelastic Medium resting over an Exponentially Graded Inhomogeneous Half-space Influenced by Gravity

The present article is devoted to a theoretical study on Love wave vibration in a pre-stressed fluid-saturated anisotropic porous viscoelastic medium embedded over an inhomogeneous isotropic half-space influenced by gravity. The expression of dispersion has been achieved with the help of mathematical tools such as variable separable method and Whittaker’s function’s expansion under certain boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014